Data Preprocess
The categories
column contains multiple categories, and
some of them are not clean. It took some time to clean them. You can
check the code below.
library(GWalkR)
library(tidyr)
cases_df <- read.csv("fair_use_cases.csv")
cases_cate_df <- separate_rows(cases_df, categories, sep = ";|,")
cases_cate_df$categories <- tolower(cases_cate_df$categories)
cases_cate_df$categories <- trimws(cases_cate_df$categories, "left")
cases_cate_df <- subset(cases_cate_df, !grepl("circuit", categories, ignore.case = TRUE))
Data Viz: case year vs. category
The length of a bar represents row count and the color represents the
median year of the case. The unpublished
and
textual work
are the two oldest categories with median
years of 1998 and 1999.5, while
photograph
and internet/digitalization
are the
two latest categories with median years of 2015 and
2018.
Data Viz empowered by
(It’s on CRAN
now!!)
gwalkr(data=cases_cate_df, visConfigFile="./test_config.json")
LS0tCnRpdGxlOiAi4pqW77iPIEhvdyBGYWlyIFVzZSBDYXNlcyBFdm9sdmVkOiBmcm9tIFRleHQg4pyN77iPKDE5OTgpIHRvIEludGVybmV0IPCfkrsgKDIwMTgpIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIHRoZW1lOiBjZXJ1bGVhbgogIGh0bWxfZG9jdW1lbnQ6CiAgICBkZl9wcmludDogcGFnZWQKLS0tCgoKIyMjIERhdGEgUHJlcHJvY2VzcwpUaGUgYGNhdGVnb3JpZXNgIGNvbHVtbiBjb250YWlucyBtdWx0aXBsZSBjYXRlZ29yaWVzLCBhbmQgc29tZSBvZiB0aGVtIGFyZSBub3QgY2xlYW4uIEl0IHRvb2sgc29tZSB0aW1lIHRvIGNsZWFuIHRoZW0uIFlvdSBjYW4gY2hlY2sgdGhlIGNvZGUgYmVsb3cuCmBgYHtSfQpsaWJyYXJ5KEdXYWxrUikKbGlicmFyeSh0aWR5cikKCmNhc2VzX2RmIDwtIHJlYWQuY3N2KCJmYWlyX3VzZV9jYXNlcy5jc3YiKQpjYXNlc19jYXRlX2RmIDwtIHNlcGFyYXRlX3Jvd3MoY2FzZXNfZGYsIGNhdGVnb3JpZXMsIHNlcCA9ICI7fCwiKQpjYXNlc19jYXRlX2RmJGNhdGVnb3JpZXMgPC0gdG9sb3dlcihjYXNlc19jYXRlX2RmJGNhdGVnb3JpZXMpCmNhc2VzX2NhdGVfZGYkY2F0ZWdvcmllcyA8LSB0cmltd3MoY2FzZXNfY2F0ZV9kZiRjYXRlZ29yaWVzLCAibGVmdCIpCgpjYXNlc19jYXRlX2RmIDwtIHN1YnNldChjYXNlc19jYXRlX2RmLCAhZ3JlcGwoImNpcmN1aXQiLCBjYXRlZ29yaWVzLCBpZ25vcmUuY2FzZSA9IFRSVUUpKQpgYGAKCiMjIyBEYXRhIFZpejogY2FzZSB5ZWFyIHZzLiBjYXRlZ29yeQpUaGUgbGVuZ3RoIG9mIGEgYmFyIHJlcHJlc2VudHMgcm93IGNvdW50IGFuZCB0aGUgY29sb3IgcmVwcmVzZW50cyB0aGUgbWVkaWFuIHllYXIgb2YgdGhlIGNhc2UuIFRoZSBgdW5wdWJsaXNoZWRgIGFuZCBgdGV4dHVhbCB3b3JrYCBhcmUgdGhlIHR3byBvbGRlc3QgY2F0ZWdvcmllcyB3aXRoIG1lZGlhbiB5ZWFycyBvZiAqKjE5OTgqKiBhbmQgKioxOTk5LjUqKiwgd2hpbGUgYHBob3RvZ3JhcGhgIGFuZCBgaW50ZXJuZXQvZGlnaXRhbGl6YXRpb25gIGFyZSB0aGUgdHdvIGxhdGVzdCBjYXRlZ29yaWVzIHdpdGggbWVkaWFuIHllYXJzIG9mICoqMjAxNSoqIGFuZCAqKjIwMTgqKi4KCkRhdGEgVml6IGVtcG93ZXJlZCBieSBbIVtdKGh0dHBzOi8vaW1nLnNoaWVsZHMuaW8vYmFkZ2UvZ2l0aHViLUdXYWxrUi0wMDAwMDA/c3R5bGU9ZmxhdC1zcXVhcmUmbG9nbz1naXRodWIpXShodHRwczovL2dpdGh1Yi5jb20va2FuYXJpZXMvR1dhbGtSKSAoSXQncyBvbiBbQ1JBTl0oaHR0cHM6Ly9jcmFuLnItcHJvamVjdC5vcmcvd2ViL3BhY2thZ2VzL0dXYWxrUi9pbmRleC5odG1sKSBub3chISkKCmBgYHtSfQpnd2Fsa3IoZGF0YT1jYXNlc19jYXRlX2RmLCB2aXNDb25maWdGaWxlPSIuL3Rlc3RfY29uZmlnLmpzb24iKQpgYGA=